▲ 人工智慧、機器學習與深度學習之間的關係比較圖(圖片來源:騰訊xw.qq.com)
什麼是人工智慧?
「人工智慧」,又稱「人工智能」,英文為「Artificial Intelligence(縮寫為 AI)」簡單來說就是:任何讓電腦能夠像人類般思考、表現出類似人類的行為」的科技;更具體一點的說法,人工智慧是一種可以感知、學習、推理、協助決策,並採取行動幫助我們解決問題的科技。
1980年代約翰瑟爾(John Searle),提出對「人工智慧」分類方式:
機器學習
機器學習是人工智慧的一個分支、是實現人工智慧的一個途徑,即以機器學習為手段解決人工智慧中的問題。
機器學習理論主要是設計和分析一些讓電腦可以自動「學習」的演算法。機器學習演算法是一類從資料中自動分析而歸納出規則來,並利用此規則對未知的資料進行預測的演算法。
機器學習是第三波人工智慧發展的代表技術;而在眾多機器學習演算法中,深度學習(多層次類神經網路的代稱)是近幾年成長最快、表現最亮眼的技術。
深度學習
深度學習是機器學習演算法的一種的,為人工智慧中成長最快的領域。
「深度學習」是模擬人類神經網絡的運作方式,只要懂得定義問題,有足夠質量的資料以及轉化為模型的能力,幾乎可以應用在任何決策問題上,雖然不見得都有準確的預測能力。不過目前常見的 Google 語音辨識、文字翻譯、照片分類、自動回信、垃圾郵件判斷,現在都是用深度學習來做的。
Python 與人工智慧的關係
Python 是 AI 領域最多人使用的程式語言,主要原因之一是因為它有大量的資料庫,讓用戶可自由套用、執行各式功能、操作。這些資料庫由來自四面八方的來源 (如 PyPi) 所發布,包含預先編寫好的程式片段,讓 AI 開發人員不需要從頭開始編寫程式。
機器學習與深度學習都需要連續的數據處理, Python 的函式庫則可讓你取用、處理、轉換這些數據。例如應用於深度學習的 Keras 函式庫,它允許快速計算和原型設計,因為它除了使用計算機的 CPU 之外還使用 GPU。
其他與人工智慧、機器學習、深度學習有關的八個函式庫,請見此篇文章:連 IBM 都推!入行 AI 人工智慧必學 Python 的8大理由
相關文章:
從哆啦A夢到 iPhone...為何 UI 設計用「圓角」就是比較討喜?
APCS 程式檢定,該從 C、Java 還是 Python 下手?
【前端工程師CSS教學】定位元素Positioning Elements
留言列表